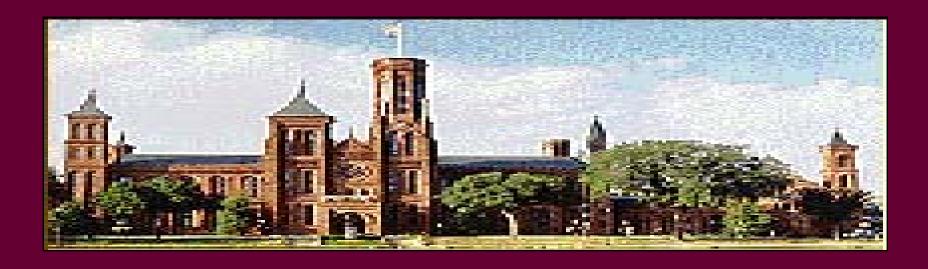
Building Partnerships for Sustainable Education

Environmental Protection Agency
Science Forum
June 3, 2004

Sally Goetz Shuler
Executive Director
National Science Resources Center

Education for Sustainability


Education for sustainability is a lifelong learning process that leads to an informed and involved citizenry having the creative problem-solving skills, scientific and social literacy, and commitment to engage in responsible individual and cooperative actions. These actions will help ensure an environmentally sound and economically prosperous future.

Building Partnerships for Sustainable Education

Outline of Remarks

- What is the National Science Resources Center?
- What is the state of science education in U.S. schools?
- What is the vision for science education based on research and best practice and how does this relate to sustainable education?
- Based on these experiences, what recommendations would we make for building partnerships that would lead to sustainable education?

National Science Resources Center

Established in 1985 as an organization of the National Academies and the Smithsonian Institution

National Science Resources Center

Mission

To improve the learning and teaching of science in the nation's 16,000 school districts

Vision

All students having access to research-based science programs that will lead to improved attitudes about science, an increase in student achievement, and lifelong learning skills.

Strategy

To assist school districts nationwide in implementing research-based science programs for K-12 students.

National Science Resources Center Core Principles

- 1. Science for all children
- 2. Products and services are informed by research and incorporate best practices
- 3. Reform strategies focus on systems thinking and leverage change through strategic partnerships

NSRC Science Education Reform Theory of Action

Increased Student Achievement

Improved Instruction

Establishment of School District Infrastructure

Development of Vision of Effective Science Learning and Teaching

Knowledge of Research and Best Practices

Stages of Work

Initiation Phase

Implementation Phase

Institutionalization Phase

NSRC Centers of Excellence

Curriculum Development Center Leadership and Assistance for Science Education Reform Center

Professional Development Center

Building Partnerships for Sustainable Education

 What is the state of science education in U.S. schools?

Historical Context Nature of Schools Drivers of Reform

Standards and Assessment

International Competition

Poor Student Performance Drivers
of
Science
Education

Labor Market Issues

Need for Literate

Scientifically

Citizens K-1

Citizens K-12 and
Undergraduate
Issues

National Commission on Excellence in Education

- "Our once unchallenged preeminence in commerce, industry, science, and technological innovation is being overtaken by competitors throughout the world." 1983
- Report called special attention to how far American students lagged behind the rest of the developed world in science and mathematics education

U.S. Talent Pool of

Scientists and Engineers

Insufficient and Declining

International Comparisons of U.S. Performance in K-12 Science Education

Last in the world

Scientific Literacy

Citizens and Students

Majority have little to no understanding of the nature of science and

No direct experiences with effective science learning and teaching

Inadequate Workforce

Skills needed to be successful competitors in the modern world economy

- 1. A high capacity for abstract, conceptual thinking.
- 2. The ability to apply that capacity for abstract thought to complex real-world problems—including problems that involve the use of scientific and technical knowledge—that are nonstandard, full of ambiguities, and have more than one right answer.
- 3. The capacity to function effectively in an environment in which communication skills are vital in work groups.

Ray Marshall and Marc Tucker, Thinking for a Living

Value of Science

in the

School Curriculum

Not seen as important as reading and mathematics

Sources

National Science Foundation
Education Trust
Public Agenda
Committee on Economic
Development

Building Partnerships for Sustainable Education

 What is the vision for science education based on research and best practices and how does this relate to sustainable education?

New Vision

- All students should have the opportunity to learn science.
- Students should learn science in ways that reflect the modes of inquiry that scientists use to understand the natural world.
- The quantity of factual science knowledge needs to be reduced so that students can develop a deeper understanding of science

Learning for the Future (CED 2000)

Three Challenges for Science Education:

- Increasing Student Interest in Science to Maintain the Pipeline
- Demonstrating the Wonder of Discovery While Mastering Rigorous Content
- Acknowledging the Professionalism of Teachers

National Efforts

American Association for the Advancement of Science **Project 2061**

Benchmarks for Science Literacy

- "Students will end up with richer insights and deeper understandings than they could hope to gain from a superficial exposure to more topics than they can assimilate."
- "The problem for curriculum developers, therefore, is much less what to add then what to eliminate."

Establishment of National Science Resources Center 1985

U.S. National Academy of Sciences

National Science Education Standards

Published 1996 18,000 reviewers 250 pages NATIONAL

SCIENCE EDUCATION

STANDARDS

National Science Education Standards

Guiding Principles

- Science is for all students
- Learning science requires active engagement
- School science should reflect professional science
- Improving science requires system-wide reform

The Standards

- Content
- Teaching
- Professional Development
- Assessment
- Program and System

State and Local Efforts

Value of Science

 Need for science to have the same status in the curriculum as reading and mathematics

State Standards

 Need for state science standards to reflect a vision that is developmentally appropriate and with a philosophy that less is more for K-12 students

Programs Based on Research and Best Practices

 Need for school districts having strategic plans focused on a systemic approach to improving their science programs that are based on research and best practices

Research-Based Curriculum

- Need for a critical mass of teachers, administrators, parents, and community leaders valuing researchbased curriculum
- Need for sufficient research-based K-12 curriculum / instructional materials

Preparation of Teachers

 Need for current and new teachers having adequate academic backgrounds and preparation to teach science effectively

Preparation of Teachers

 Need for sufficient and ongoing inservice education for K-12 teachers of science

Equipment and Supplies

 Need for hands-on science equipment and materials for K-12 teachers of science to use

Appropriate Assessment

 Need for appropriate tests used to assess inquiry-centered science learning

Supporting Context

 Need for administrators, community leaders, parents, and state officials to provide an environment and establish policies that align with programs based on research and best practices.

Supporting Context

 Need for active engagement of the scientific and engineering community in all aspects of reform

Innovation Sustainable **Development** Internationally Competitive Healthy **Economy** Jobs **Democracy**

Literate Citizens

Lifelong Learners

Effective K-20 Science **Education Programs Based on Research**

New **Businesses**

Informed Voters

Individuals Seeking **Truth**

Decisions Based on Evidence Effective Laws and Policies

Building Partnerships for Sustainable Education

 Based on these experiences, what recommendations would we make for building partnerships that would lead to sustainable education? To Build the Talent We Need for Sustainable Education, We Need To Form Partnerships with Individuals and Organizations Who Will

Be bold and dedicated leaders from our scientific community who will not only talk and analyze the problem but accept responsibility for achieving results

Advocate Need for Systemic Change and Raised Expectations In

Government and Legislature

Education Management and Administration

Private Sector Networks

General Public Domain

Assist with Change Management and Resource Allocation

Validate Focus on Science Education

Take our best practices to scale

Thank you

National Science Resources Center

www.nsrconline.org